

Primary Vegetative Buffer Values

Water Quality Protection/Remediation

- surface water runoff
- groundwater drainage

Erosion Control

- upland
- in-stream

Wildlife Habitat Enhancement

- upland
- in-stream

Economic Value

- lumber/pulp products
- firewood
- forage/hay
- nuts/fruits

Nature of Contaminant Inputs

Watershed or Drainage Basin

Natural unit of land bounded by its drainage divide and subject to surface and subsurface drainage to a common outlet region.

Nonpoint Source

Origin of discharge is diffuse Discharge may be transient in time

> Runoff from cropland Effluent from septic systems Highway de-icing salts

Point Source

Inputs with well defined point of discharge Discharge is usually continuous

Leakage from landfills and storage tanks Wastewater treatment facilities Industrial inputs

Common Classes of Pollutants

Rural Areas

- Thermal Stress
- Sediment
- Pathogens
- Nutrients
- Pesticides

Urban Areas

- Sediment
- Pathogens
- Nutrients
- Heavy Metals
- Petroleum Products
- Road Salt
- Thermal Stress

Temperature Regulation

Water A Transport Medium

Hydrologic Cycle

Estimated Water BudgetCoastal Plain - VA

Surface Runoff Mechanisms

1. Hortonian Overland Flow

2. Saturation Overland Flow

3. Frozen Soil Conditions

Estimated Runoff versus Land Use 4 inch Rain

Effect of Development on Storm Runoff

Distribution of Subsurface Water

Aquifer Types

Atmosphere

Baseflow

Ground Water discharged to nontidal streams and rivers

General Physiographic Regions of Chesapeake Bay Watershed

Base Flow Index Chesapeake Bay Watershed

Bachman et al. 1998 Hydrogeomorphic Regions

Nearshore Mixing Patterns

Importance of Groundwater Discharge to Coastal Systems

Factors Affecting Overland and Groundwater Flow

Climatic

Topographic

- Storm type
- Storm characteristics
- Precipitation distribution
- Precipitation type
- Drainage basin size/shape
- Elevation/orientation of Basin
- Land and water course slopes
- Distribution of water courses
- Detention reservoirs

Factors Affecting Overland and Groundwater Flow

Geologic

Vegetative

HumanAlteration

- Top soil characteristics
- Hydraulic conductivity of subsoil/sediment
- Location of impervious formations
- Rainfall interception
- Plant distribution in basin
- Plant water demands
- Water control structures
- Water use
- Changes in land use patterns and activities

Chesapeake Bay Watershed

Three Zone Streamside Riparian Buffer

Riparian Vegetation Buffer Processes that Reduce Contaminant Loadings

- Shading
- Hydrologic Alteration
- Sedimentation
- Soil Formation
- Plant Uptake
- Denitrification

Diurnal Stream Temperature Variation

From Hewitt and Fortson 1982 (SE Georgia)

Mean Monthly Groundwater Temperatures

Annual Sediment Loss

lbs. per acre

- Rainfall interception
- Soil infiltration rates
- Promote diffuse flow
- Deep and high density roots
 prevent gulley or channel formation
- Tall/stiff stems provide year-round protection for downwind soils

Vegetative Buffer Zone Reductions of Sediment in Surface Runoff

Buffer Type	Width	% Sediment
	m	Reduction
Grass	4.6	61
Grass	9.2	75
Forest	19	90
Forest/Grass	19/4.6	96
Forest/Grass	19/9.2	97

Characteristics of "Typical" Residential Wastewater

Parameter	Mass Loading (gm/cap/day)	Concentration (mg/l)
Solids		
Total	115-170	680-1000
Volatile	65-85	380-500
Suspended	35-50	200-290
Oxygen Demand		
BOD ₅	35-50	200-290
Chemical	115-125	680-730
Nutrients		
Total Nitrogen	6-17	35-1000
Ammonia	1-3	6-18
Nitrites/Nitrates	<1	<1
Total Phosphorus	3-5	18-29
Phosphate	1-4	6-24
Bacteria		
Total Coliforms*		$10^{10} - 10^{12}$
Fecal Coliforms**		
*organisms per L		10 ⁸ - 10 ¹⁰

Daily Discharge of Total Coliforms (in millions)

Bacteriological Water Quality of Surface Water Runoff

Surface Runoff Source	Total Coliforms (organisms/100ml)	Fecal Coliforms (organisms/100ml)
Grasslands		
Grazed pasture	6000-329,000	1000-57,000
Hayfield	4000-71,000	660-1,070
Croplands	15,800-50,000	5,400-14,300
Urban		
Business/Residential	58,000	10,900
Stormwater/ Sewage	20,000,000	4,245,000
Wooded	90,000	960

Nutrient Transport within a Watershed

Phosphorus Cycle

Nitrogen Cycle

Annual Nutrient Loading Estimates

Land Use	Nitrogen	Phosphorus
Agricultural		
Row crop	110-135 lb/acre	22 lb/acre
Hay	80-110 lb/acre	18 lb/acre
Orchard	35-90 lb/acre	18-27 lb/acre
Residential		
Septic tank	12-33 lb/house	3-5 lb/house
Lawn fert.	40-175 lb/acre	9-18 lb/acre
Precipitation	5-10 lb/acre	0.2-0.5 lb/acre

Representative Agricultural Land Use N Budget

2 yr rotation: corn/wheat/soy Fertilizer: 130/100/0 lbs/acre Harvest: 120/55/35 bu/acre N Content: .7/1.1/3.3 lbs/bu

(12+115+62) - (135+13+12) = 29 lbs / acre Inputs Outputs Residuals EXPORT

Nitrogen Runoff Losses from Agricultural Fields: Groundwater versus Surface Runoff

Reference	Site Location	Subsurface N Loss kg/ha/yr	Surface Runoff N Loss kg/ha/yr
Peterjohn and	Rhode River,	23.1	7.9
Correll 1984	MD	TN (74%)	
Staver and	Queen Annes	23.9	2.1 – 2.4
Brinsfield 1995	Co., MD	TN (91%)	
Hubbard and	Coastal	23.1	0.3
Sheridan 1983	Plain, GA	NO ₃ (91%)	
Lowrance 1992	Tifton, GA	29.1 TN (93%)	2.1

Contaminant Reductions within Septic Tank Systems

Septic Tank

- 35-45% **↓** in TSS
- 15% **▼** in BOD
- 10% **▼** in Phosphorus
- 10% **▼** in Nitrogen
- Limited ▼ in Fecal Coliform

Soil Absorption System

- 75-90% **▼** in TSS, BOD, COD
- 25-50% **▼** in Phosphorus
- 5-25% ▼ in Nitrogen
- Near 100% in Fecal Coliform

Nitrogen Concentrations (ppm) Surrounding a Septic Tank Drainfield

Annual Ground Water Nitrogen Loadings for Residential Housing Using Septic Tanks

Reference	Location	kg Household	kg person
Koppelman 1978	Long Island, NY	6.9 (TDN)	2.3 (TDN)
Gold et al. 1990	Kingston, RI	9.5 (DIN)	3.2 (DIN)
Weiskel and Howes 1991	Buzzards Bay, MA	4.2-7.3 (TDN)	1.6-2.7) (TDN)
Maizel et al. 1997	Chesapeake Bay	6.8-10.0 (TDN)	2.4-3.5 (TDN)
Valiela et al. 1997	Waquoit Bay, MA	5.2 (TDN)	2.9 (TDN)
Reay 2003	Coastal Plain, VA	5.7-10.7 (DIN)	2.4-2.9 (DIN)

Groundwater-Surface Water Nitrogen Loading Reduction Strategies

OSWDS's

- Advanced treatment of OSWDS effluent
- Low pressure systems

Agricultural Lands

- Plant/soil N analysis
- Timing, method, and type of fertilizer
- Liming
- Irrigation management
- Cover crops

Riparian Buffers and Intertidal Ecosystems

- Upland vegetative riparian buffers
- Fringing wetlands
- Low Eh nearshore sediments

Riparian Vegetation Buffer Processes that Reduce Nutrient Loadings

- Sedimentation
- Soil Formation
- Plant Uptake
- Denitrification

Riparian Buffers in Landscapes

On slopes:

Soil Drainage along an Elevational Gradient

Vegetative Buffer Zone Reductions of Nutrients in Surface Runoff

Buffer Type	Width m	% N Reduction	% P Reduction
Grass	4.6	4	29
Grass	9.2	23	24
Forest	19	74	70
Forest/Grass	19/4.6	75	79
Forest/Grass	19/9.2	80	77

Inner Coastal Plain Setting

- Western shore and upper Eastern Shore
- High degree of stream incision
- Short flow paths
- High topographic relief
- Finer textured sediments/soils
- Well drained uplands and poorly drained riparian regions

Groundwater Nitrate Levels Beneath Riparian Forests

Outer Coastal Plain Setting

Biologically Active Zone

Deeper Unconfined Aquifer

10 × meters

Confining Unit

Forest Buffer Transect

Denitrification Rates Influence of Drainage Classification and Soil OM

Representative Denitrification Rates

Environment	In Situ Rates Ibs/acre yr	Amended Rates Ibs/acre yr
Salt Marsh	13	6150
Stream Bed	0.2 - 0.3	3-7
Top Soil	0.7 – 25	14075
Riparian Wetland		
poorly drained	0.1 - 74	12685
well drained	0.5 - 23	133
Grasslands		
poorly drained	15 – 100	5260
well drained	0.5 - 53	2970

Annual Riparian Forest Nutrient Budget

Units expressed as kg/ha

Riparian Forests Cost Effective and a Natural Value

	Kg N ha ⁻¹ yr-1	Dollar Value
Denitrification	30-40	\$33 - \$762
Woody Storage	12-50	\$13 - \$952
Otorage	Total	\$46 - \$1714
Nitrogen	26-74	\$29 - \$1410
Budget		

Based on annual wastewater treatment plant costs: \$0.50-\$8.65 per lb.

Estimated Buffer Width versus Specific Benefit

Open Season on Riparian and Intertidal Vegetative Buffers?

